Tuesday, April 15, 2008
Score Reading: Misprints
Monday, April 14, 2008
Score Reading: Clefs and Key Signatures
- What are the clefs and key signature?
- What is the rhythmic grouping?
- What is the significance of each of the chromaticisms?
- Where do the following nonharmonic tones occur and what types of dissonance result: accented neighboring tone (on 2 metrical levels)? articulated suspension?
- What is the harmonic organization of the piece, specifically, the chords and cadences?
- What tempo is appropriate for this Adagio?
Saturday, April 5, 2008
Tonal Relationships: Key Signatures
Friday, April 4, 2008
Staff Notation: Clefs and Key Signatures
Rhythmic Grouping: Asymmetry
By far, the most typical rhythmic grouping for a 16-measure musical unit is (8 + 8), with each 8-measure phrase subdividing into (4 + 4). Perfect balance, proportion and symmetry operate within these parameters. [See the previous post - ‘Rhythmic Grouping: Symmetry’ - April 4, 2008].
The rhythmic grouping of ‘Heidenröslein’ is asymmetrical: [4 + 6 + 6], subdivided as [(2 + 2)] + [(2 + 2) + 2] + [(2 + 2) + 2]. The asymmetry exists on 2 levels: there are 3, not 2 (or 4) phrases, and the second and third phrases are expanded by way of a 2-measure extension. Clearly, the structure of the text has everything to do with the asymmetry of the music.
Other structural features of the song are worth noting: 1] a modulation to the dominant key takes place from measure 5 to 12; 2] there is a beautiful array of nonharmonic tones in the vocal line, including appoggiatura, passing tone, accented passing tone [on 2 different metrical levels], escaped tone, and accented neighboring tone; 3] strong dissonances occur in measure 9 between the vocal part and the top note of the piano part; 4] the highest note, G5, occurs in the vocal line of the following measures: 4 - root of the tonic, 10 - 7th of the dominant 7th of D major, 12 - root of the tonic, and 13 - 5th of the IV chord.
Rhythmic Grouping: Symmetry
Studies in Music Theory by Harrison, Martin and Fink, states that ‘Rhythmic grouping occurs when a series of durations coalesces into a single musical unit. Phrases are rhythmic groups, discrete units of connected musical motion that are demarcated by clear beginnings and endings. We distinguish between phrase groupings [which end in a cadence and a convincing point of arrival] and subphrase groupings [shorter groups within phrases]. Caesuras, where breaths may be taken, define the limits of rhythmic groups. Rhythmic groups frequently end with a rest or relatively long note value.’
The symmetry of the grouping of the Minuet lies in the nearly exact rhythmic repetition of the first 8-measure phrase in the second half. Within each phrase are two 4-measure subphrases, the first of which has an internal grouping of (2 + 2) and the second of which is a single connected group. Thus, caesuras occur at the ends of measures 2, 4, 8, 10, 12 and 16, and [perfect authentic] cadences occur only in measures 8 and 16.
A question for further investigation: aside from tonality, what are the differences between the 2 phrases?
In the next post, asymmetrical rhythmic grouping will be the focus.
Thursday, March 27, 2008
Staff Notation: Clefs and Key Signatures
Tuesday, March 18, 2008
Score Reading: Misprints
Monday, March 17, 2008
Staff Notation: Clefs and Key Signatures
Sunday, March 16, 2008
Score Reading: A Bach Autograph
Saturday, March 15, 2008
Tonal Relationships: Transposition
Friday, March 14, 2008
Staff Notation: Clefs and Key Signatures
Score Reading: The Vocal Clefs
Thursday, March 13, 2008
Harmonic Techniques: Voice Leading
Wednesday, March 12, 2008
Staff Notation: Clefs and Key Signatures
Tuesday, March 11, 2008
Staff Notation: Clefs
Sunday, March 9, 2008
Range Limitations: Chopin's Piano
What is particularly wonderful about this excerpt is that in the time span of exactly one measure - from the downbeat of m. 35 to the downbeat of m. 36 - Chopin traverses the complete range of the piano of his time. We should try to visualize a keyboard whose range is C1 to F7 - a total of 8 3/8" narrower than today’s 88-key range, and then imagine Chopin presiding over it and knowing that he can’t go any further down or up than its almost 6½-octave range would allow. Chopin probably didn’t give it a second thought. His magnificent oeuvre is a testament to how the range limitations of a musical instrument can be transformed into the most beautiful aesthetic and structural/design enhancements, but only in the hands of a genius.
There are some noteworthy dissonances in the excerpt: m. 33, beat 2 and again on the downbeat of m. 35 - F [RH] appoggiatura against E natural [LH]; m. 34, beat 1 - D natural [RH], also an appoggiatura; beat 2 - five of the seven white key pitches - from bass up - G, C, F, E and A. The logical explanation is: the F in the LH is an accented upper neighboring tone, while the A in the RH is an appoggiatura - all within the prevailing tonic harmony of C major. Chopin probably didn’t give any of this a second thought either.
Staff Notation: Clefs and Key Signatures
Saturday, March 8, 2008
Staff Notation: Clefs and Key Signatures
Thursday, March 6, 2008
Tonal Relationships: Related Keys and Modulation
Wednesday, March 5, 2008
Tonal Relationships: D flat minor
In Schubert’s A flat major Impromptu, op. 142, no. 2, the middle section is in the subdominant key of D flat major. Within that section is a passage in D flat minor, the parallel minor of D flat major, quoted above. Schubert accomplishes this not by an enharmonic key signature change but by writing in the accidentals F flat and B double flat when those pitches are required.
The excerpt also contains a beautiful example of ornamental chromaticism: the D naturals and F naturals in the 3rd measure act as accented passing tones on the downbeat and neighboring tones on the 3rd beat, all within a 2-measure rhythmic extension of the dominant.
Range Limitations: Beethoven's Piano
The two excerpts from the first movement [Presto, 2/2 meter] of Beethoven’s early [1796] Sonata in D major, op. 10, no. 3, above, illustrate a typical feature of sonata form: corresponding passages from the exposition and recapitulation are often not exact transpositions of each other. The range limitations of the keyboard, usually at the upper end, often determine the necessity to modify one of the two statements of particular material. In this piece, the first statement, in the dominant key [A major], stops ascending in the upper octave one measure before the cadence. Looking at the later statement, in the home key of D major, we see the top line ascending all the way to the tonic.
These observations raise additional questions. Did Beethoven compose ‘chronologically’, thus conceiving the exposition before the recapitulation, or did the entire movement, and the entire sonata, occur to him in a single moment of inspiration? Another question may be asked: why didn’t Beethoven revisit his earlier works later in life, when he could easily have reconstructed them to fit the increased range of the piano? And a final question: what are the other differences between the two passages?
Tuesday, March 4, 2008
Contrapuntal Techniques: Voice Crossing
Invertible counterpoint appears throughout the literature, especially during the Baroque era. But something quite fascinating takes place in this Fantasie regarding the voice leading at the cadences of the two excerpts. An additional voice appears [black square] toward the end of the 2nd measure in both cases. The tenor actually divides and becomes two independent voices [tenor 1 and tenor 2]. Now to the fascinating part: in the D minor statement, tenor 1 [B natural - up a major 6th from D below] crosses above the alto [G sharp - down a diminished 7th from F above] on the 4th beat. Both voices then proceed to A [unison] on the next downbeat. Needless to say, this voice crossing will have a bearing on how the organist plays the passage.
There is compelling evidence to support this assertion. Hint: it is directly connected to the process of inversion.
Comments are most welcome.
Rhythmic Grouping: Counting
When a piece begins with an anacrusis, none of this changes. J. S. Bach’s magnificent chorale prelude, O Mensch, bewein’ dein’ Sünde gross, BWV 622, begins with a quarter-note anacrusis, establishing that the first 2-measure phrase ends on the third beat of measure 2. It then follows that each subsequent 2-measure phrase is identical in rhythmic organization.
I believe there is something unusual about the way the piece is notated. If we listen to it without knowing in advance that it is in 4/4 meter and that it begins with an anacrusis, how would we count along as we listen? Would we recite ‘4 & 1 & 2 & 3 &’ without giving it a second thought? I have tried this as I listen, and don’t feel it to be the proper inflection in the case of this chorale prelude. Instead, ‘! & 2 & 3 & 4 &’ feels right, as if there is no anacrusis.
Monday, March 3, 2008
Harmony and Meter
In a discussion on this topic in their book, ‘Studies in Music Theory’, ACP, 1991, James Harrison, Louis Martin and Myron Fink state that ‘changes in harmony may produce the accentuation and differentiation needed to create metrical patterns.’ The harmonic scheme in G minor above is given as an illustration of how harmonic motion coincides with meter. H, M & F propose that ‘only one of the three metrical interpretations synchronizes with the harmony. In triple meter [Ex. b], chord changes always occur between the upbeat and downbeat: the sense of motion from V to I therefore reinforces the metrical accent. This type of organization, where harmonic changes have metrical prominence, is common in all styles.’ Included are two additional harmonic schemes, one in E major, the other in G minor, for which the proper meter is to be determined.
Harmony and meter are like color and time, respectively. Every masterpiece has its own balance of the two. For further investigation: can the interaction of harmony and meter be a basis for determining a composer’s style?
Saturday, March 1, 2008
Rhythmic Grouping: Rests
Now on to the main point of this post: in my experience as a collaborative pianist/organist with singers and as an avid listener of lieder and opera, I am troubled by the fact that, most of the time, singers do not observe rests at the ends of rhythmic groups. The biggest names in vocal performance are just as remiss in this regard as the most amateur singer. What could possibly be the reason behind this disregard for the composers' markings?
Anyone who has sung in a chorus knows the hard work that goes into making all cutoffs perfectly together. Choral directors are constantly reminding the singers to watch especially at the ends of phrases - why? so that the sound turns into silence at a precise moment in time. One would think that highly trained 'professional' singers would take this wonderful structural aspect of the music more seriously, but they do not. I'm relatively certain that they are unaware of the problem.
All comments are welcome.